PDH

Publicado: 26 enero 2011 en Clase 8

Jerarquía Digital Plesiócrona

La Jerarquía Digital Plesiócrona, conocida como PDH (Plesiochronous Digital Hierarchy), es una tecnología usada en telecomunicación tradicionalmente para telefonía que permite enviar varios canales telefónicos sobre un mismo medio (ya sea cable coaxial, radio o microondas) usando técnicas de multiplexación por división de tiempo y equipos digitales de transmisión. También puede enviarse sobre fibra óptica, aunque no está diseñado para ello y a veces se suele usar en este caso SDH (Sinchronous Digital Hierarchy).

El término plesiócrono se deriva del griego plesio, cercano y chronos, tiempo, y se refiere al hecho de que las redes PDH funcionan en un estado donde las diferentes partes de la red están casi, pero no completamente sincronizadas. La tecnología PDH, por ello, permite la transmisión de flujos de datos que, nominalmente, están funcionando a la misma velocidad (bit rate), pero permitiendo una cierta variación alrededor de la velocidad nominal gracias a la forma en la que se construyen las tramas.
Un ejemplo clarifica el concepto:

Tenemos dos relojes que, nominalmente, funcionan a la misma velocidad, señalando 60 segundos cada minuto. Sin embargo, al no existir enlace alguno entre los dos relojes que garantice que ambos van exactamente a la misma velocidad, es muy probable que uno de ellos vaya ligeramente más rápido que el otro.

PDH se basa en canales de 64 kbps. En cada nivel de multiplexación se van aumentando el número de canales sobre el medio físico. Es por eso que las tramas de distintos niveles tienen estructuras y duraciones diferentes. Además de los canales de voz en cada trama viaja información de control que se añade en cada nivel de multiplexación, por lo que el número de canales transportados en niveles superiores es múltiplo del transportado en niveles inferiores, pero no ocurre lo mismo con el régimen binario.

Distintas jerarquías de transmisión

Existen tres jerarquías plesiócronas diferentes: Europea, Americana y Japonesa. La Europea se basa en una señal de 2 Mbit/s, mientras que la Americana y la Japonesa se basan en la de 1,5 Mbit/s.

Tabla de velocidades de la JDP

La velocidad básica de transferencia de información, o primer nivel jerárquico, es un flujo de datos de 2,048 kbps (generalmente conocido de forma abreviada por “2 megas”).

Para transmisiones de voz, se digitaliza la señal mediante MIC usando una frecuencia de muestreo de 8 kHz (una muestra por cada 125 μs) y cada muestra se codifica con 8 bits con lo que se obtiene un régimen binario de 64 kbps (abreviado como “64K”). Agrupando 30 canales de voz más otros 2 canales de 64 kbps, utilizados para señalización y sincronización, formamos un flujo PDH E1. De forma alternativa es posible también utilizar el flujo completo de 2 megas para usos no vocales, tales como la transmisión de datos.

La velocidad del flujo de datos 2 megas es controlada por un reloj en el equipo que la genera. A esta velocidad se le permite una variación, alrededor de la velocidad exacta de 2,048 Mbps, de ±50 ppm (partes por millón). Esto significa que dos flujos diferentes de 2 megas pueden estar (y probablemente lo están) funcionando a velocidades ligeramente diferentes uno de otro.

Al fin de poder transportar múltiples flujos de 2 megas de un lugar a otro, estos son combinados, o multiplexados en grupos de cuatro en un equipo multiplexor. La multiplexación se lleva a cabo tomando un bit del flujo 1, seguido por un bit del flujo 2, luego otro del 3 y finalmente otro del 4. El multiplexor además añade bits adicionales a fin de permitir al demultiplexor del extremo distante decodificar qué bits pertenecen a cada flujo de 2 megas y así reconstituir los flujos originales. Estos bit adicionales son, por un lado, los denominados bits de justificación o de relleno y por otro una combinación fija de unos y ceros que es la denominada palabra de alineamiento de trama que se transmite cada vez que se completa el proceso de transmisión de los 30+2 canales de los 4 flujos de 2 megas, que es lo que constituye una trama del orden superior (8 megas).

La necesidad de los bits de relleno o justificación es que como cada uno de los flujos de 2 megas no está funcionando necesariamente a la misma velocidad que los demás, es necesario hacer algunas compensaciones. Para ello el multiplexor asume que los cuatro flujos están trabajando a la máxima velocidad permitida, lo que conlleva que, a menos que realmente esté sucediendo esto, en algún momento el multiplexor buscará el próximo bit, pero este no llegará, por ser la velocidad del flujo inferior a la máxima. En este caso el multiplexor señalizará (mediante los bits de justificación) al demultiplexor que falta un bit. Esto permite al demultiplexor reconstruir correctamente los flujos originales de los cuatro 2 megas y a sus velocidades plesiócronas correctas.

La velocidad del flujo resultante del proceso antes descrito es de 8,448 Mbps (8 megas) que corresponde al segundo nivel jerárquico.

Por procedimientos similares se llega a los niveles tercero, constituido por 4 flujos de 8 megas y una velocidad de 34,368 Mbps (34 megas) y cuarto, formado por 4 flujos de 34 megas y una velocidad de 139,264 Mbps (140 megas).

De la misma forma, mediante la multiplexación de 4 flujos de 140 megas, se forma un flujo de 565 Mbit/s, pero su estructura y proceso de multiplexación, al contrario de lo que sucede con los cuatro niveles precedentes, no han sido normalizados por los organismos de normalización especializados UIT y CEPT, por lo que los flujos generados por los equipos de un fabricante pueden ser, y de hecho lo son, incompatibles con los de otro fabricante, lo que obliga a que el enlace completo de 565 Mbps esté constituido con terminales del mismo fabricante.

La velocidad de 565 Mbps es la típica de los sistemas de transmisión por fibra óptica, aunque en el pasado se ha utilizado, aunque con escaso éxito por sus estrictos requerimientos, sobre cables coaxiales.

Los equipos PDH están siendo actualmente reemplazados por equipos de tecnología SDH en la mayoría de las redes de telecomunicación debido a las mayores capacidades de transmisión de estos y a sus mejores condiciones para la operación y mantenimiento centralizado.

Equipos Múltiplex PDH de la Jerarquía de Transmisión Europea

Modelos:

  • Equipo Múltiplex digital plesiócrono de 2/8 Mbit/s: Equipo que en transmisión combina 4 señales tributarias a 2,048 Mbit/s, de forma que a la salida se obtiene una señal múltiplex de 8,448 Mbit/s. En recepción lleva a cabo la función complementaria.
  • Equipo Múltiplex digital plesiócrono de 8/34 Mbit/s: Equipo que en transmisión combina 4 tributarios de 8,448 Mbit/s, de forma que a la salida se obtiene una señal múltiplex de 34,368 Mbit/s. En recepción lleva a cabo la función complementaria.
  • Equipo Múltiplex digital plesiócrono de 34/140 Mbit/s: Equipo que en transmisión combina 4 tributarios de 34,368 Mbit/s, de forma que a la salida se obtiene una señal múltiplex de 139,264 Mbit/s. En recepción lleva a cabo la función complementaria.
  • Equipo Múltiplex digital plesiócrono de 140/565 Mbit/s: Equipo que en transmisión combina 4 tributarios de 139,264 Mbit/s, de forma que a la salida se obtiene una señal múltiplex de 564,992 Mbit/s. En recepción lleva a cabo la función complementaria. No está normalizado por la ITU-T. También se denomina múltiplex digital 4 x 140 Mbit/
  • Características:
  • Multiplexan 4 tributarios, N = 4.
  • El tipo de multiplexación de los tributarios es bit a bit.
  • Los bits de cada tributario no se presentan en la entrada en una posición fija (señales plesiócronas), ya que están controlados por relojes diferentes, que son a su vez distintos del reloj que controla la señal múltiplex, por lo que puede darse una superposición de bits al constituir la trama. Para resolver este problema se emplea la justificación positiva.

La ITU-T define en la G.701 que dos señales digitales que tengan la misma velocidad nominal V (bit/s), que mantengan sus desviaciones máximas respecto a esta cadencia dentro de límites especificados ±ΔV (bit/s) y que no provengan del mismo reloj son señales digitales plesiócronas.
Estructura de trama:

La trama de un equipo múltiplex digital plesiócrono estará formada por:

  • bits de alineación de trama para la sincronización de la parte receptora del equipo múltiplex JDP distante.
  • bit de alarma (A). Indicación de alarma a la parte receptora del múltiplex JDP distante, cuando A=1.
  • bits de servicio (S) de uso nacional.
  • bits de información (Ii) de cada tributario (i), multiplexados bit a bit.
  • bits de control de justificación (Ci1 …CiN ). Son de 3 a 5 bits por cada tributario i, que están situados en posiciones fijas de la trama. Para cada tributario, indica al receptor distante que sí hay / no hay justificación para ese tributario en esa trama.
  • bits de justificación (Ji). Es 1 bit por cada tributario i, que está situado en una posición fija de la trama. Para cada tributario, puede ser un bit de justificación (valor 1) o un bit de información (valor 0 ó 1), dependiendo del valor de los bits de control de ese tributario:
  • si Ci1….CiN = “11…1”, será un bit de justificación valor 1
  • si Ci1….CiN = “00…0”, será un bit de información valor 0 ò 1

Limitaciones de la PDH

El proceso de justificación por una parte, y por otra el hecho de que la temporización vaya ligada a cada nivel jerárquico, hacen que en la práctica sea imposible identificar una señal de orden inferior dentro de un flujo de orden superior sin demultiplexar completamente la señal de línea.

Uno de los mayores inconvenientes de la demultiplexación plesiócrona es que una vez formada la señal múltiplex, no es posible extraer un tributario concreto sin demultiplexar completamente la señal.

Supongamos por ejemplo que tenemos un flujo de 140 Mbit/s, y que en un punto intermedio deseamos extraer un canal a 2 Mbit/s; es necesario para ello recurrir a las voluminosas y rígidas cadenas de multiplexación, que de forma esquemática se representan en la siguiente figura:

Cadenas de multiplexaión

Las diferentes jerarquías plesiócronas existentes: Americana, Europea y Japonesa, hacen muy difícil el interfuncionamiento. La escasa normalización ha conducido a que los códigos de línea, la modulación o las funciones de supervisión, sean específicas de cada suministrador, de forma que equipos de diferentes fabricantes son incompatibles entre sí.

TRAMA DE 2048 Kb/s

La organización temporal de los canales digitales se realiza mediante la Multitrama MFR (MultiFrame) consistente en 16 Tramas FR (Frame) numeradas desde fila 0 a 15. Cada trama tiene 32 columnas o Intervalos de Tiempo TS (Time Slot), numerados de 0 a 31. Cada intervalo de tiempo lleva un Octeto o Byte de un canal de 64 kb/s. Los tiempos la trama tienen una duración de 125 μseg, correspondiente al período de muestreo de una señal telefónica (8 kHz). Cada uno de los 32 intervalos de tiempo dura entonces 3,9 μseg y cada bit tiene una duración de 488 nseg. Una multitrama ocupa un tiempo de 2 mseg.

 

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s